Treiberanalyse mit Entscheidungsbäumen

Johannes Lüken / Dr. Heiko Schimmelpfennig Random Forests sind nicht nur zur Prognose, sondern zugleich zur Analyse der Treiber einer abhängigen Variable einsetzbar. Gegenüber vielen anderen Verfahren besitzen sie den Vorteil, dass mühelos Treiber mit unterschiedlichen Skalenniveaus untersucht werden können und keine Annahme über die Form des Zusammenhangs zur abhängigen Variable getroffen wird. Zudem stellt Multikollinearität für sie kein Problem dar. Je nach Skalenniveau der abhängigen Variable existieren mehrere Möglichkeiten zur Messung der Bedeutung der…

Random Forests und Boosted Trees

Johannes Lüken / Dr. Heiko Schimmelpfennig Entscheidungsbäume dienen der Vorhersage einer zu beschreibenden (abhängigen) Variablen. Die (unabhängigen) Trennungsvariablen formen den Baum und können die Strukturen im analysierten Datensatz perfekt abbilden, das heißt die abhängige Variable genau „prognostizieren“. Für die Vorhersage der abhängigen Variablen in weiteren Daten kann ein solcher Baum aber dennoch ungeeignet sein. Ein möglicher Lösungsweg ist die Induktion mehrerer Bäume, von denen jeder einzelne auf einem etwas anderen Datensatz beruht. Random Forests und…