Entscheidungsbäume – Algorithmen im Überblick
Johannes Lüken / Dr. Heiko Schimmelpfennig Entscheidungsbäume können zur Segmentierung und Prognose eingesetzt werden. Sie teilen einen Datensatz in einer baumartigen hierarchischen Struktur in immer kleiner und hinsichtlich einer abhängigen Variable immer homogener werdende Teilgruppen (Knoten) auf. An jeder Verzweigung wird eine der unabhängigen Variablen (die Trennungsvariable) genutzt, um die Fälle aufzuteilen. Den Endknoten wird schließlich eine Ausprägung der abhängigen Variable zugeordnet. Dies ist je nach Skalenniveau ihr Modal- oder Mittelwert für die Fälle eines…